Linearized Reed-Solomon codes and linearized Wenger graphs
نویسندگان
چکیده
Let m, d and k be positive integers such that k ≤ me , where e = (m, d). Let p be an prime number and π a primitive element of Fpm . To each ~a = (a0, · · · , ak−1) ∈ F k pm , we associate the linearized polynomial f~a(x) = k−1 ∑ j=0 ajx p . And, to each f~a(x), we associated the sequence c~a = (f~a(1), f~a(π), · · · , f~a(π pm−2)). Let C = {c~a | ~a ∈ F k pm} be the cyclic code formed by the sequences c~a’s. We call the dual code of C a linearized Reed-Solomon code. The weight distribution of the code C is determined in the present paper. Associated to the k-tuple g = (xy, x d y, · · · , x (k−1)d y) of polynomials in Fpm [x, y], there is a Wenger graph Wpm(g). The spectrum of the graph Wpm(g) is also determined in the present paper.
منابع مشابه
Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring
Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such dist...
متن کاملLinearized Wenger graphs
Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite class of bipartite graphs of the similar type, called linearized Wenger graphs. The spectrum, diameter and girth of these linearized Wenger graphs are determined.
متن کاملHigher weight distribution of linearized Reed-Solomon codes
Let m, d and k be positive integers such that k ≤ me , where e = (m, d). Let p be an prime number and π a primitive element of Fpm . To each ~a = (a0, · · · , ak−1) ∈ F k pm , we associate the linearized polynomial f~a(x) = k−1 ∑ j=0 ajx p , as well as the sequence c~a = (f~a(1), f~a(π), · · · , f~a(π pm−2)). Let C = {c~a | ~a ∈ F k pm} be the cyclic code formed by the sequences c~a’s. We call ...
متن کاملDecoding of Block and Convolutional Codes in Rank Metric DISSERTATION
Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays...
متن کاملDecoding of block and convolutional codes in rank metric
R ank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowaday...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1502.01885 شماره
صفحات -
تاریخ انتشار 2015